

Tema: NAMA CAFÉ SOSTENIBLE Y HUELLA AMBIENTAL DEL CAFÉ EN HONDURAS Avances

Ing. Juan Gabriel Lozano / Cel 9440-2939
jlozano@ihcafe.hn; juanlozano26@gmail.com
Programa de Ambiente y Cambio Climático
24 y 25 Septiembre del 2018

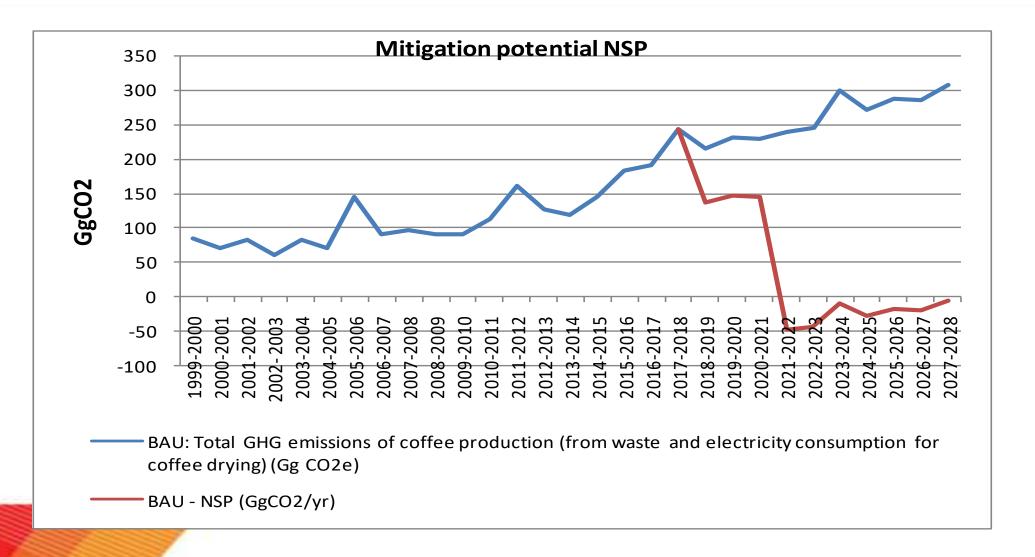
Coordinación Nacional de Programa Ambiente y Cambio Climático IHCAFE

Msc. Nolvia Gabriela Jiménez njimenez@ihcafe.hn

Fundamentos del NAMA

Compromisos de país de reforestar 1 mm de Ha.

Sinergias de Adaptación y Mitigación


NAMA Café Sostenible Enfocado en la política agroforestal

Alto potencial de reducción de emisiones GEI Principal sector productivo del país

- 824.000 tCO2e (824 GgCO2e) al final del período de implementación (2023)
- 2,354,000 tCO2e (2,354 GgCO2e) durante los próximos 10 años (235,400 tCO2e anuales en promedio durante 2019-2028)

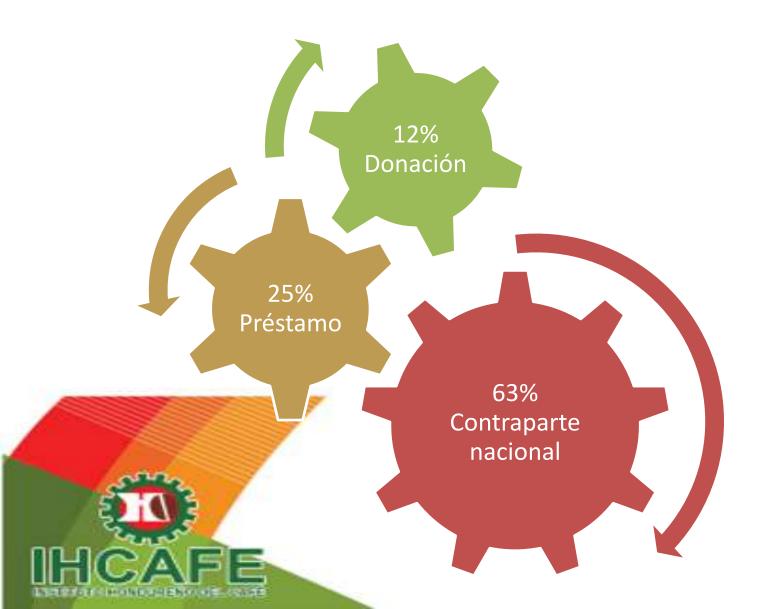
DE NAMA CAFÉ A INCLUSION FINANCIERA CLIMATICA

Practicas de M&A en finca

- \$. 500.00 / Hectárea (Promedio, varia dependiendo la practica que se implementa)
- 304 mil hectáreas en posesión del 87% de los productores (menores a 3 hectáreas por productor)

Inversión en BHC

- 490 Centrales de BHC para procesar café de un mil hectáreas cultivadas.
- \$ 80,000.00 por tecnología implementada


Inversión en Secado

- 1 Secadora para secar el café proveniente de 15 hectáreas cultivadas
- Total 32,3667 secadoras Domo
- \$ 1,500.00 por secadora tipo domo

RESUMEN DEL PROYECTO

MARCO HABILITANTE

- 1. PCM para incentivar los cultivos agroforestales en áreas productivas, como por ejemplo: Café, Cacao, Palma, Etc
- 2. Revisión y Operativización de las Buenas practicas ambientales
- 3. Facilitar la titulación de las tierras

¿¿¿Que es Huella Ambiental (HA)???

La Huella Ambiental Producto (HAP; Product **Environmental** Footprint, PEF) metodología para evaluar los efectos sobre el medio ambiente de un producto, basada en el Análisis del Ciclo de Vida (ACV). Análogamente para una organización.

Análisis del Ciclo de Vida de un Producto(ACV)

- Evaluación del ciclo de vida se basa en <u>evaluar los</u> <u>componentes</u> dentro de un mismo sistema,
- II. La calidad de los resultados del ACV depende de la calidad de los datos utilizados en la evaluación.
- III. Datos de vida se refiere principalmente a los materiales

utilizados, la energía consumida, los residuos y emisiones generadas por cada proceso incluido en los límites del sistema.

Que nos 'permitirá el ACV ?

I. Definir la UNIDAD FUNCIONAL como referencia.

nreción ambiental

- II. Principales impactos ambientales que se producen en la cadena productiva del café (Semillero-Vivero-Beneficiado Húmedo-Beneficiado-Distribución).
- III. Identificar soluciones para disminuir el impacto negativo.
- IV. Los resultados de los contaminantes se vuelven oportunidades para implementar medidas de eco eficiencia en la cadena de café, teniendo una visión panorámica de los impactos ambientales y así establecer estrategias para disminuir la

QUE ES UN ANALISIS CICLO DE VIDA (ACV)

• El Análisis del Ciclo de Vida (ACV) es un proceso objetivo_que nos permite evaluar las cargas ambientales asociadas a un producto, proceso o actividad, identificando y cuantificando tanto el uso de materia y energía como las emisiones al entorno, para determinar el impacto de ese uso de recursos y esas emisiones y para evaluar y llevar a la práctica estrategias de mejora ambiental

CUNA – PUERTA – TUMBA

Finca – Puerto – Consumidor Final

Que estamos Haciendo para la Medición de la Huella Ambiental del Café?

- la comisión europea y específicamente **PEFCR "Product Environmental Footprint Categoría Rules"** que elaboró la comisión europea específicamente para el café.
- Para el Estudio de HA, los PEFCR menciona cuales son los detalles a tomar en cuenta para que los datos sean confiables y al ser cooperativas se decidió aplicar <u>un muestreo aleatorio</u> para la recolección de datos, este método nos proporciona un conjunto de datos promedio y en base a este proceso se determino la muestra.



MEDICIÓN DE LA HUELLA AMBIENTAL EN LA CADENA PRODUCTIVA DEL CAFÉ

CUNA – PUERTA – TUMBA

Finca – Puerto – Consumidor Final

MONTAÑA VERDE - COCASJOL y COAGRICSAL

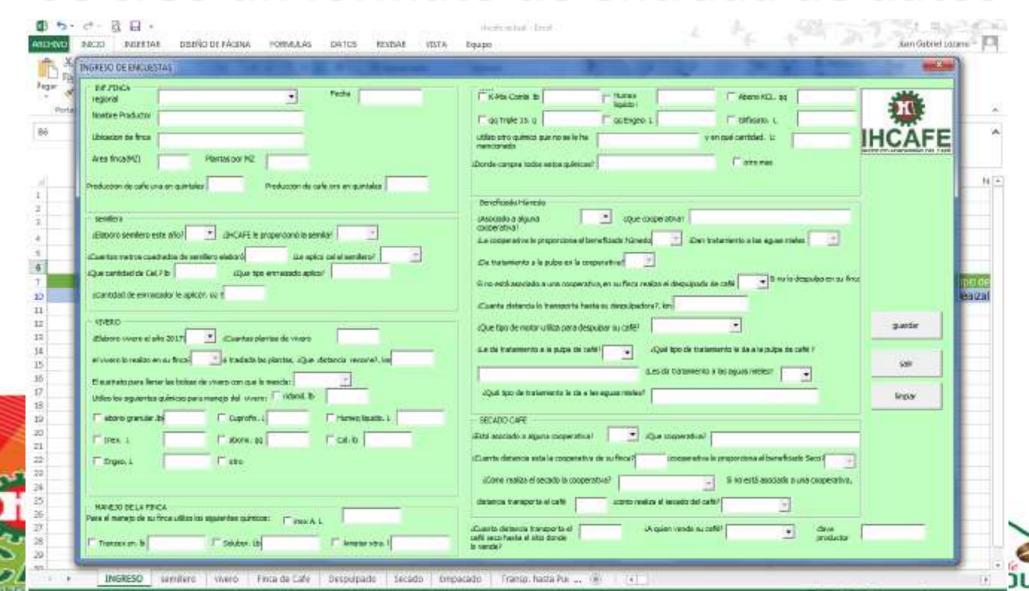
Cooperativa Agropecuaria Cafetalera

San José Limitada "COCASJOL":

- ✓ Fundada el 15 de octubre de 1967
- ✓ Ubicada: Municipio San José de Colinas, S.B.
- ✓ Total de Productores: 239 socios,
- ✓ Sus fincas oscila de 1000 a 1600 metros,
- ✓ Variedades de café que producen son los siguientes; Catuai, Café Lempira, Borboun, Caturra.
- ✓ El área de producción de la cooperativa son 1000 manzanas de café, proporciona beneficiado Húmedo del Café para el 50% de los productores.

Cooperativa Mixta Montaña Verde «COMMOVEL»

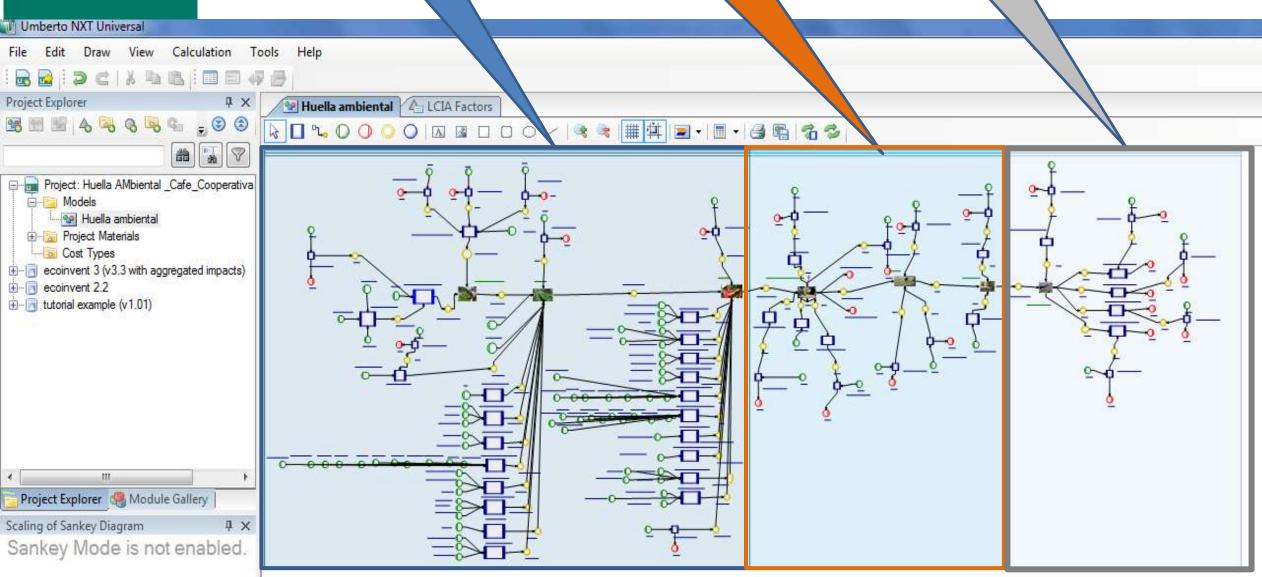
- ✓ Ubicada en San Luis Planes, Santa Bárbara,
- ✓ Sus Fincas están a una altura entre 1200-1450 msnm.
- ✓ Las variedades son Ihcafe 90, Lempira, Pacas, Catuaí.
- ✓ Cuenta con 163 socios.
- ✓ Las actividades de semillero, vivero, manejo de finca, beneficiado húmedo y beneficiado seco lo realizan de una forma semi-tradicional.
- ✓ Cuentan con sus beneficiados húmedos y secos para el 80% de sus socios,
- ✓ su área de café son 200 Manzanas.

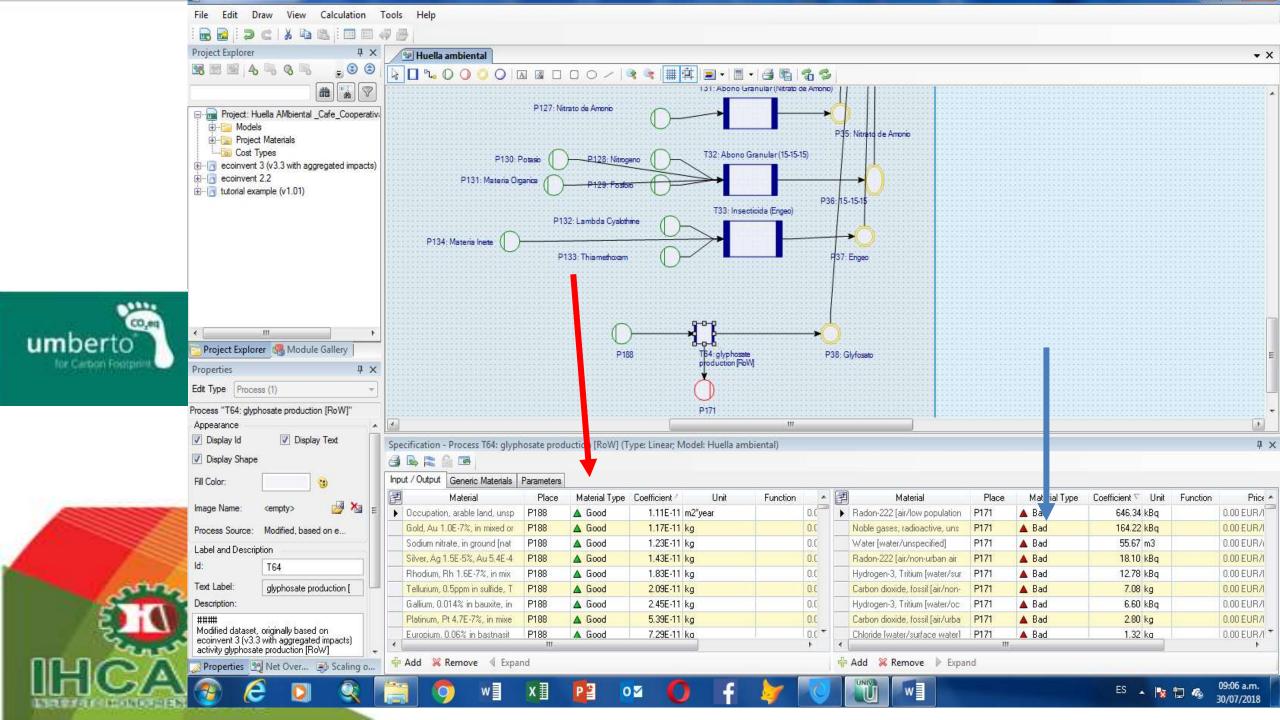


Se creo un formato de entrada de datos

Programa Usado para la Medición de HA

ingreso la información a UMBERTO de las 3 cooperativas, tomando en cuenta <u>la unidad funcional</u> que se determino (<u>1</u> <u>Kg café</u>), en el software se definió el ciclo de vida del producto en cada una de las cooperativas (cuna – puerta), donde se enfoco en la cadena productiva del café (semillero-Vivero-Beneficiado Húmedo-Beneficiado Seco-Empacado y <u>Distribución</u>), se definieron los limites del sistema en el ciclo

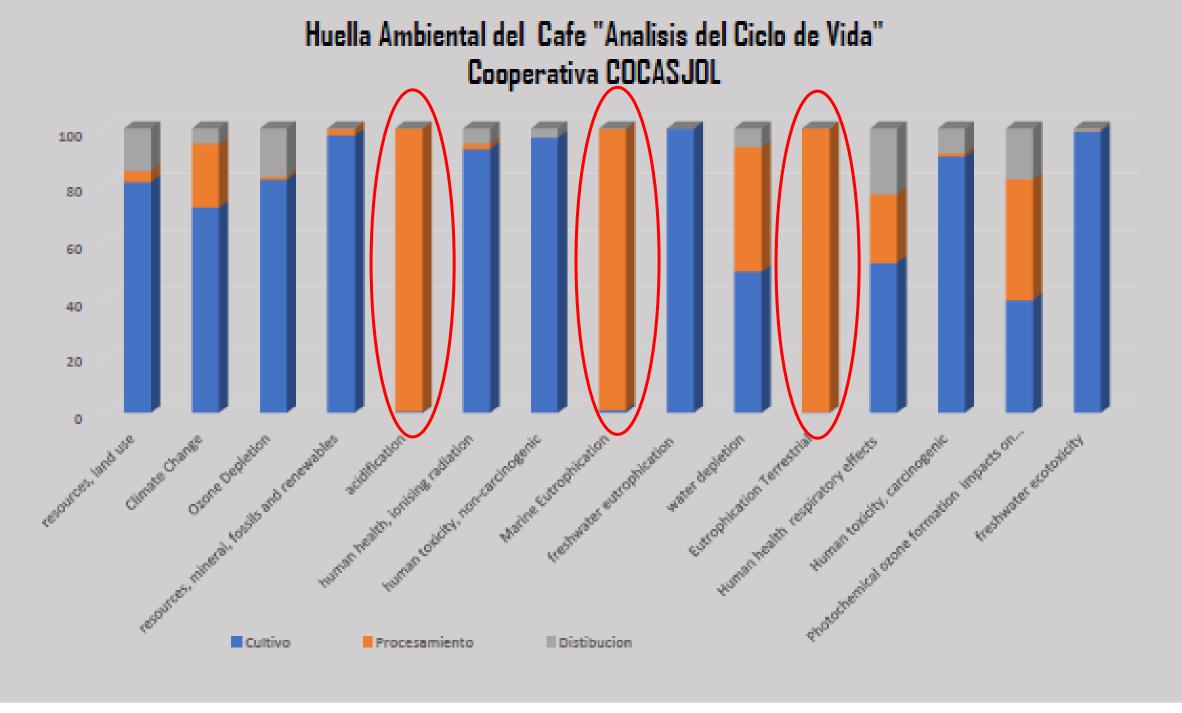

Germinador Vivero Manejo de finca Beneficiado Húmedo Beneficiado Seco empaque transporte a puerto cortés Destino final Umber NXT Universal View Calculation Tools Help **□** Project Explorer Huella ambiental 1 4 Q Q Q 30 3 Project: Huella AMbiental _Cafe_Cooperativa_COAGRI ⊕ Models Project Materials Cost Types ecoinvent 3 (v3.3 with aggregated impacts) ⊕-- ecoinvent 2.2 ± · · · o tutorial example (v1.01) CO,eq Project Explorer 🥷 Module Gallery Properties Edit Type Net (1) Net "Main Net" Net Name and Description Main Net Description: This is the main net Options Show red arrow lines as warning Results - Huella ambiental Always draw arrow spikes 3 B 3 - E 3 1/4 -Spike for arrows up to: ▲ [] C Product Value Share Costs Arrow spike width: E Costs Summary ☐ LCIA Method: ReCiPe Midpoint (E) - water depletion, WDP: 3.80E-03 m3 Angle of arrow head/tail: Cafe empacado [A213(3) (T51(3) -> P173(3))] (0.26 kg) 7.76E-04 m3 15.89 % Properties Met Overview Scaling of Sankey Diag.. Specification - Net Main Net (Model: Huella ambiental) Inventories - Huella ambiental Results - Huella ambiental 10:00 a.m.

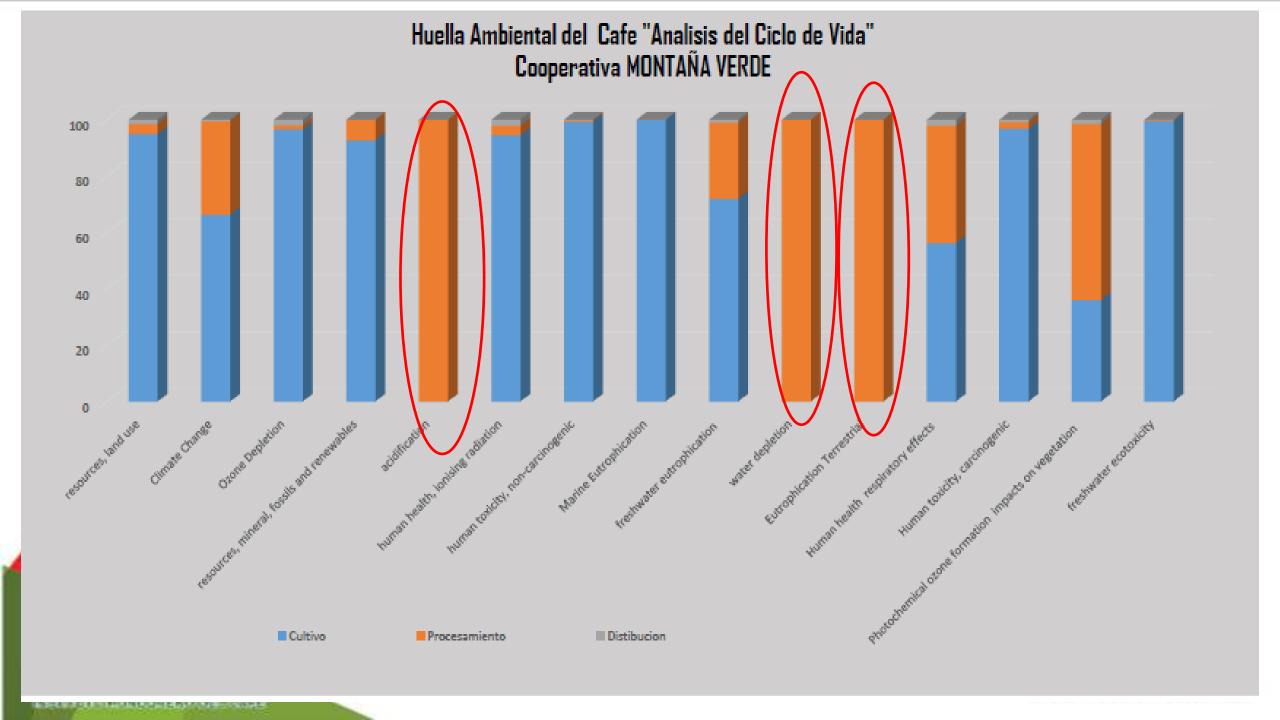


Cultivo

Procesamiento

Distribución





Ciclo de Vida del Producto (Cuna-Puerta)

	No 1	Indicadores de la Huella Ambiental CAMBIO CLIMÁTICO				Normalisation Factor per Person	Overall
	2	AGOTAMIENTO DE OZONO	Impact category	Unit	Domestic	(domestic)	Robustness
	3	TOXICIDAD HUMANA - EFECTOS DEL CÁNCER	Climate change	kg CO ₂ eq.	4.60E+12	9.22E+03	Very High
	4	OXICIDAD HUMANA - EFECTOS NO CÁNCERES	Ozone depletion	kg CFC-11 eq.	1.08E+07	2.16E-02	Medium
	5	ECO-TOXICIDAD - ACUOSOS DE AGUA DULCE	Human toxicity - cancer effect	CTUh	1.84E+04	3.69E-05	Low
	6	MATERIA PARTICULADA / INORGÁNICA RESPIRATORIA	Human toxicity - non-cancer effect	CTUh	2.66E+05	5.33E-04	Low
	0		Acidification	mol H ⁺ eq.	2.36E+10	4.73E+01	High
	7	RADIACIÓN IONIZANTE	Particulate matter/Respiratory Inorganics	kg PM _{2.5} eq.	1.90E+09	3.80E+00	Very High
	8	FORMACIÓN DE OZONO FOTOQUÍMICA	Ecotoxicity for aquatic fresh water	CTUe	4.36E+12	8.74E+03	Low
	9	ACIDIFICACIÓN	lonising radiations – human health effects	kBq U ²³⁵ eq. (to air)	5.64E+11	1.13E+03	Medium
	10	EUTROPHICATION - TERRESTRE	Photochemical ozone formation	kg NMVOC eq.	1.58E+10	3.17E+01	Medium
	11	EUTROPHICATION - AGUA DULCE ACUÁTICA	Eutrophication - terrestrial	mol N eq.	8.76E+10	1.76E+02	Medium
1	12	EUTROPHICATION - MARINE	Eutrophication - freshwater	kg P eq.	7.41E+08	1.48E+00	Medium to Low
	13	USO DEL SUELO	Eutrophication - marine	kg N eq.	8.44E+09	1.69E+01	Medium to Low
	14	AGOTAMIENTO DE RECURSOS - AGUA	Land use	kg C deficit	3.74E+13	7.48E+04	Medium
	15	AGOTAMIENTO DE RECURSOS - MINERAL, FÓSIL Y	Resource depletion - water	m ³ water eq.	4.06E+10	8.14E+01	Medium to Low
		RENOVABLE	Resource depletion - mineral, fossil & renewable	kg Sb eq.	5.03E+07	1.01E-01	Medium

COMO SE INTERPRETARA LA HUELLA AMBIENTAL

- ✓ HUELLA DE CARBONO...?
- **✓ HUELLA HIDRICA....?**
- **✓ HUELLA DE ECOTOXICIDIDAD...**

Calificación obtenida en comparación con el resto de suministros eléctricos disponibles, con verificación externa y en base a:

- Cambio Climático
- Óxidos Nitrógeno
- Escasez de agua
- Eutrofización
- Residuos nucleares

- 264 gr. co₂e/kWh
- **3** 0,424 gr. NOx/KWh
- A 0,371 m3 H,0 e/KWh
- A 0,03 gr. Pe/KWh
- 0,08 Ton/KWh

PASOS A SEGUIR.....

- A. Generación de protocolo de Medición de Huella Ambiental y la validación de la misma en Coordinación con MIAMBIENTE+
- B. Protocolo para el diseño y presentación de Huella Ambiental en el café Hondureño.
- C. Socialización de resultados de la HA
- D. Mediciones anuales

Gracias por su atención

